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Abstract- Hybrid architectures with electronic buffering /pro- 
cessing and optical switching fabric are receiving a lot of 
attention as potential candidates for the design of scalable high- 

. performance switches/routers. However, the reconfiguration over- 
head of optical fabrics introduces new challenges for the traffic 
scheduling across these switches. Existing algorithms proposed 
for this architecture can be classified as either batch-scheduling 
or single-scheduling. This paper is the first which analyzes and 
compares the performance of these two scheduling classes. The 
comparison is based on speedup requirement, average and worst- 
case delay and algorithm efficiency. Moreover, analytical models 
for the stability and average delay of single-scheduling algorithms 
are introduced in this paper. We will demonstrate that these 
results are helpful in determining the right type of algorithm 
and choosing the appropriate algorithm parameters for a given 
switch system. 

I. INTRODUCTION 

Recent advances in communication link technology, such as 
Dense Wavelength Division Multiplexing (DWDM), have dra- 
matically increased the transmission capacity of optical fibers. 
As a result, switches/routers are replacing the transmission link 
as the bottleneck of network. This has lead to a high demand 
for high-speed switches/routers with large I/O ports than ever 
before. For example, switches of size 256 to 1024, running 
at OC192 (lOGb/s) or even higher speed are becoming (will 
soon become) a necessity for most IP core networks. 

Most high-performance switches/routers today use an all- 
electronic solution, with Virtual Output Queuing (VOQ) and a 
crossbar-based switching fabric. Current state-of-the-art elec- 
trical switching fabrics support only up to 2.5Gb/s [l]. A re- 
cent break-through demonstrated that a 256x 256 2GbIsec per 
port non-cascading crossbar chip can be practically designed 
[2]. The power consumption of this crossbar chip and the 
scheduler chip is around 1kW. However if we want to further 
upgrade the design in size (e.g., 1024x 1024) and/or data 
rate (e.g., OC768, 40Gb/s), and at the same time incorporate 
redundancy for fault tolerance, then the power consumption 
and number of chips needed will be an order of magnitude 
higher. Given the fact that the default power consumption per 
piece of equipment (e.g., rack) is typically 6kW in addition to 
compliance with NEBS physical-packaging requirements (i.e., 
rack size), then this necessitates the distributed design of the 
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Fig. 1. Schematic view of a multi-rack hybrid packet switch. 

whole switchlrouter over several racks where one rack would 
contain the switch fabric and the scheduler, and the other racks 
would contain the linecards. 

It is possible to transport electrical signals between different 
racks, using coax, twisted-pair, etc. But consider there maybe 
potentially thousands of signals travelling between different 
racks, and this quickly leads to a cabling nightmare. One 
technology increasingly used to solve the problem is optical 
fiber interconnections [ 11. When such a switch architecture 
is deployed, packets that arrive from the external interfaces 
are processed and buffered in the electronic domain. Data are 
then transmitted over a fiber link to the switch fabric rack, 
where they are processed again in electronics. Once they are 
switched, a different fiber connection is used to transmit the 
packets to the egress linecards, where they are again processed 
and buffered in electronics, before finally being transmitted in 
optics. Hence series of opto-electronic conversions are needed, 
that translate into significant cost and power requirements. In 
other words, if the whole switchlrouter design cannot fit within 
a single rack, then it becomes extremely difficult to come up 
with a cost-effective solution using an electronic switch fabric. 

For exactly these reasons, a hybrid switch architecture 
with electronic buffers and optical switching fabric, as shown 
in Fig. 1, is proposed for designing high-capacity scalable 
switches. Moreover, optical fabrics have many advantages over 
their electrical counterparts in terms of higher capacity, lower 
power consumption and less cost. 
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However, a large-scale hybrid packet switchhouter presents 
unique challenges: the reconfiguration time of an optical 
switch fabric is much longer than that of an electronic fabric. 
With typical cell sizes on the order of 50ns (64bytes at 
10Gb/s), the fabric takes from 0.2 to 20,000 cell times to 
reconfigure [3]. Traffic may still arrive during the reconfig- 
uration periods, but are blocked before being switched. Hence 
the fabric should run at higher switching speed than the line 
rate during the transfer periods. In other words, the switch 
should have fabric speedup to compensate the blockage at the 
reconfiguration period. 

It is obvious that traditional slot-by-slot scheduling algo- 
rithms may severely cripple the switch performance by having 
too much reconfiguration overhead. Instead, schedules should 
be held for some time to avoid frequent fabric reconfigurations. 
There exists a tradeoff between outdated schedule and recon- 
figuration overhead. As a result, how to determine the schedule 
and its holding time efficiently is extremely important, and is 
our key motivation in this paper. Recent research scheduling 
algorithms for optical fabrics can be roughly divided into two 
categories, namely batch-scheduling and single-scheduling, 
based on the number of schedules they make at each run. 

The reminder of this paper introduces the two classes of 
algorithms, emphasizing their performance and comparing 
them to each other. In addition, we give analytical models for 
the stability and average delay of single-scheduling class of 
algorithms. Section I1 is about the performance and analysis of 
these scheduling algorithms. Analytical models are presented 
in Section 111. Finally, conclusions are drawn in Section IV. 

11. ALGORITHMS FOR SWITCHES WITH 
RECONFIGURATION DELAY 

We assume the algorithm runs on a VOQ non-blocking N x 
N switch with reconfiguration delay z,. The switch operates 
on fixed-size data units (say, cell) in a slotted manner and 
hence has integer speedup S. There is at most 1 arrival for 
each input at each time slot. Denote X i j  to be the arrival rate 
of traffic from input i to output j. Only admissible traffic is 
considered in this paper. That is, V j  E 1 . . . N ,  X i j  < 1 
and V i  E 1 . .  . N ,  X i j  < 1. 

A. Butch Scheduling: a TSA-Based scheudling 

The idea of batch-scheduling comes from Time Slot Assign- 
ment (TSA) algorithms for Satellite Switching Time Division 
Multiple Access (SS/TDMA) system, in which reconfigura- 
tion delay also exists. The algorithm runs in accumulate- 
schedule-transfer cycles as shown in Fig.2. lncoming traffic 
are accumulated periodically and the accumulation time is a 
predefined integer T. A particular cycle first accumulates traffic 
in a N x N traffic matrix D. Batch scheduling algorithm 
then decomposes D into a set of permutation matrices Pi, 
each has weight l i .  These matrices correspond to a batch 
of schedules and the lengths these schedules hold. Assume 
the number of permutation matrices is K ,  the decomposition 
should satisfy: 1) D is covered, that is, xi=, liPi 2 D;  2) 
The total transmission time of D (including reconfiguration 

K 

Batch 
Sched i 

Batch 
Sched i+l 

p2 _ _ _ _ _  d.. ...Qme 
PI  

1--. .-. 
. H  * H .  

...... 
iTConfig Transfer Config Transfer (i+l)T 

.. .... --H -- "- ...... 
Traffic accumuation 

period for batch Sched i+l 

Fig. 2. Execution timeline of batch scheduling algorithms. 

delay), which is Z i  + Kz,, is minimized. Traffic in D 
are sent out according to the schedules and the transmission 
period should finishes in T time slots. Normally speedup is 
needed to achieve this. Traffic accumulation of the next cycle 
starts simultaneously with the transmission period. 

1) A Representative Butch-Scheduling Algorithm: Find out 
the schedules that minimize the transmission time is a NP- 
complete problem. Most previous TSA algorithms, as in [4][5], 
normally assume the reconfiguration delay to be either zero or 
infinity for simplification. A recent enhancement, DOUBLE 
algorithm in [3], breaks this limitation and claims better per- 
formance over large range of reconfiguration delay values. At 
each batch scheduling point, DOUBLE executes the following 
procedure: 

Divide the traffic matrix D into coarse matrix A andJine 
matrix B. Assume d i j ,  aij and bij  (1 5 i , j  5 N )  are 
the elements in the corresponding matrix. Matrix A and 
B are calculated by, 

Under admissible traffic, [3] proves that 
- For a coarse matrix A, the column sum and row 

sum are less than N .  A can be edge-colored using 
N colors. 

- For a fine matrix B, all elements are less than [TIN] 
Using the above properties, DOUBLE generates K = 2N 
schedules, each with holding length [ T I N ] .  N of them 
are produced by edge-coloring coarse matrix A; the other 
N schedules are just N non-overlapping permutation 
matrices. [3] shows that the traffic matrix D will always 
be covered by such schedule method. 

2) Speedup and Accumulation i7me Requirement: The 2N 
schedules has a total transmission time 2N x [ T I N ] .  As 
indicated in Corollary 3 in [3], a speedup of & is needed 
to transmit these schedules in T time slots. Fig.3 shows the 
speedup required by DOUBLE for a 16 x 16 switch under 
different reconfiguration delay settings. Because the speedup 
is an integer in slotted switching system, DOUBLE can only 
run on switches with speedup larger or equals to 3. 

For an N x N switch with reconfiguration delay z,, the 
accumulation time T of DOUBLE should be no less than 
Tmin = 2z,N. Accumulation time may be relatively large 
for switches with large number of ports and/or long recon- 
figuration delay, e.g. a 128 x 128 switch with z ,  = 50 may 
require an accumulation time larger than lo5 time slots. 

3) Bound of Average Delay and Worst Delay: Consider a 
cell arriving at some time in the accumulation period of batch 
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Fig. 3. Relationship between traffic accumulation time and required speedup 
(use N=16 as example). 

schedule i. The queuing delay of that cell includes: 1) waiting 
time before batch schedule i is executed, which takes value of 
[0, TI and 2 )  waiting time before its schedule comes. This may 
take a value in the range of [x,, TI. Under an i.i.d. arrival, the 
expected value of waiting time in 1) is T/2 .  Thus the average 
cell delay for a TSA-based algorithm is at least larger than 
half of its accumulation time. For the worst-case delay bound, 
the execution of TSA ensures cell delay is less than 2T. 

4) Algorithm Eficiency of DOUBLE under Uniform Trafic: 
A N x N switch is able to set up N non-contending connec- 
tions between inputs and outputs. We say this switch has a 
capacity of N .  If a particular algorithm can manage to set up 
to K(O 5 K 5 N )  connections on average for the switch, we 
say the algorithm efficiency is KIN.  

Let us look at the coarse matrix A generated by DOUBLE. 
Under admissible uniform traffic, the line sum and row sum 
of traffic matrix D is less than its accumulation time T ,  
and E[dij] = T / N .  That indicates for each rowlcolumn, the 
expected number of elements which are larger than T I N  is 
less than N/2. Since aij = I*], the expected number 
of non-zero entries in A is less than N2/2 .  This half-empty 
coarse matrix A is scheduled to be covered by N schedules, 
which may have N 2  potential transfer capacity. It is clear that 
around 50% of the transfer capacity is wasted. 

The schedule of fine matrix B is not optimistic either. Ele- 
ments in B are uniformly distributed in the range [0, LT/N]]. 
However each of the N schedules holds [TIN1 time slots. 
Many connections are idle for a large portion of the schedule 
holding time. Our simulation shows that the schedule effi- 
ciency for coarse matrix is 40% to 50%, and 30% to 40% 
for fine matrix under uniform traffic. 

TIN 

B. Single Scheduling 

Single-scheduling algorithms can be viewed as a slowed- 
down version of traditional electronic switch scheduling al- 
gorithms. It generates one schedule each time and hold this 
schedule for several time slots. Similar ideas can be found 
in burst-mode switching in [6] and packet-mode scheduling 

Reconfiguration overhead 

Fig. 4. 
(for 4 x 4 switch under uniform traffi c with load 0.99) 

Minimum achievable average delay by DOUBLE and LQF+Hold 

in [7]. The system works as schedule-reconfiguration-transfer 
cycle. The holding length of a particular schedule can either 
be constant or vary with the switch state. In this paper, we 
assume the holding length to be constant. 

1) A Representative Single-Scheduling Algorithm: The 
queueing states change along with the transfer period and the 
schedule becomes outdated. Some VOQs may have already 
sent out all its cells before the transfer period ends but the 
connections for them cannot be released. Intuitively, a schedule 
favoring longer queues helps to reduce the resource wastage 
mentioned aboveLongest Queue First (LQF) algorithm should 
be a good choice. LQF+Hold is used in this paper to refer 
to a single-scheduling which uses LQF algorithm to find 
matchings. 

2) Speedup Requirement: As proved in Section 111-A, a 
speedup of 2 is sufficient for a LQF+Hold scheduling algo- 
rithm to be stable. 

3) Average and Worst Delay: An estimation model of 
average delay of the LQF+Hold scheduling algorithm under 
uniform traffic is given in Section 111-B. The average delay is 
a function of switch size, reconfiguration delay, holding time 
and traffic arrival rate. No worst delay bound is guaranteed. 

4) Algorithm Eficiency: Simulation shows that under 
heavy load, the LQF+Hold scheduling algorithm achieves an 
efficiency of over 90%. This is a direct consequence of the 
good properties of LQF. 

C. Comparison Between Batch and Single Scheduling 

DOUBLE and LQF+Hold are simulated under same system 
setting. Fig. 4 shows the minimum average delay they achieve 
under different reconfiguration overheads and speedup settings 
for a switch of size 4. As can be seen, DOUBLE is sensitive to 
the speedup, and increase of speedup may significantly reduce 
the average delay. As the reconfiguration delay increases, both 
algorithms ensure the average delay will not increase a lot. For 
small switch size or short reconfiguration delay, DOUBLE and 
LQF+Hold provide an average delay of the same magnitude. 
Choice between them depends on what is the focus: small 
average delay or a guarantee of worst-case delay bound. For 



switches with large sizes andfor large reconfiguration delays, 
since DOUBLE may require a rather long accumulation length 
and hence increases the delay time, LQF+Hold scheduling 
may serve as a better choice. 

111. ANALYTICAL MODELS OF SINGLE SCHEDULING 
ALGORITHM 

This section presents the analytical models for the stability 
and average delay of the LQF+Hold scheduling algorithm. 

A. Stability Analysis 

1) Dejinitions and Preliminavy Results: The behavior of 
an N x N switch can be approximated using M ( M  = N 2 )  
discrete-time queues of infinite capacities. Let Qt be the row 
vector of queue lengths at time t ,  i.e., Qt = { q j ,  q:, . . . , qy}, 
where qf is the number of cells in queue i at time t. Denote the 
arrivals at time t by At = {u t ,  U : ,  . . . , a y }  and the departures 
by Dt = {d i ,d? , .  . . , d p } .  We assume that ai of vector At 
are independent and identically distributed (i.i.d.) for variable 
t with fixed i. Since at each time slot, for each input, there 
is at most one arrival, each element uf can only take values 
0 or 1 for all i and t. If the system has speedup S ( S  is 
assumed to be integer in this paper), then each element dt 
can take values 0,1,. . . , S.  The system evolves according to 
Qt+i = Qt + At - Dt. 

Denote llXll by the Euclidean norm of vector X = 

{d ,z2  ,..., zK}; llXll = d w .  In addition, V(Xt) 
is denoted to a special Lyapunov function: V(Xt) = X t X T .  

The evolution of most practical discrete-time queuing sys- 
tems can be described by an irreducible discrete-time Markov 
chain (DTMC), whose state vector at time t is Qt, Qt E I N M .  
The following theorem is a paraphrase of Corollary 1 in [7]. It 
provides a criterion for the strong stability of DTMC queuing 
systems. 

Theorem 1: Given a system of queues with state vector Qt, 
if there exists e E R+ and B E R+ such that VQt : IlQtll > 
B, E[V(Qt+l) - v(Qt)lQt] < -ellQtll, then the system of 
queues is strongly stable, and all the polynomial moments of 
the queue length distributions are finite. 

2) Stability of LQF+Hold Scheduling: Let us consider the 
stability of the LQF+Hold scheduling. The system works in 
configuration-transfer cycles as shown in Fig. 5. New schedul- 
ing decisions are made at a sequence of time instants t ,  E 
I N + ,  based on current queuing state Qt,. The connection is 
set up in the switching fabric after z ,  reconfiguration time slots 
and is held for a predetermined zb slots. Since the evolution 
of the system following t ,  is conditionally independent of the 
evolution of the system before t,, the sequence of t ,  is a 
non-defective sequence of regeneration instants. 

Lemma I :  Given a switch with reconfiguration delay z,, 
LQF+Hold scheduling with a predefined holding time zb is 
stable under any admissible i.i.d. input traffic pattern A, as 
long as the switch has a speedup S 2 1-1. 

prooJ The evolution of the system is represented by a 
DTMC whose state is a vector of queue lengths Qt, . Between 

Config Transfer 
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tn-1 tn tn+l 
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Fig. 5. Execution time line of single schedule+hold algorithm. 

neighboring regeneration time instants, the system evolutes 
according to: 

\ i=o j = Z a  

Please note that in the above equation the elements in Dt,+j 
are assumed to be either 0 or 1 (different from Dt de- 
fined previously) to simpli the presentation. In addition, 
Ci=O Z a - k Z b - 1  At,+i and Ci:Ta 9 z b - l  Dt,+j will be represented 
by A and D in the following proof. 

We start as 

Under the constraint of 0/1 arrival and [ O S ]  departures at 
every time slot, with a finite holding time zb, E [ ( C A  - 

D)T] is also finite. Thus, D ) ( C  A - 
E[V(Qtn+l) - '(Qtn 1 IQtn 1 lim 

IlQt, ll+m IlQtn II 

Please note although all Dt,+i refer to the same matching, 
they are not necessarily equal. Since some queues assigned 
to transfer may have been empty before the next scheduling 
instant. 

Define D6 = StbDtn+za - ~ ~ : ~ a s z b - - '  Dt,+j; it is the 
difference between the assigned transfer capacity and the 
actual transmission number in one cycle. Thus, 

= E [ ( x  A - SzbDtn+za + D6)Qc lQtnl 

= (za + zb)E[An]QE - SzbDtn+zaQE + E[D&]Q% 

We know from [8] that LQF has the property of (E[A,] - 
Dt,)QE < 0. If the speedup S satisfies S 2 1-1. Note 
E[D6]QE 5 ME[z;]  < 00. Now we have, 
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Fig. 6. Service cycle for a particular VOQ (use Ql1 as example) 

The conclusion from the above analysis suggests that if the 
holding time is chosen to be larger than the reconfiguration 
delay, a speedup of 2 is sufficient for the LQF+Holding 
scheduling algorithm to be stable. 

B. Approximate Average Delay Estimation 

Besides the property of stability, average cell delay is 
also a common criterion to evaluate the performance of 
scheduling algorithms. Given a switching system (NxN ports, 
reconfiguration delay za and speedup S) ,  if the LQF+Hold 
scheduling is used, then the cell delay is directly determined 
by the algorithm holding length .q,. In order to provide some 
clarification of the relationship between average delay and 
holding time, we construct an approximate queuing model. 
The model works under uniform traffic, but can be extended 
to non-uniform cases. It may also serve as a guidance on how 
to choose an appropriate holding time. In this paper, we only 
consider the case where the LQF+Hold scheduling algorithm 
have a constant holding time. 

I )  Notation and Assumption: Below is a list of notations 
used throughout the delay estimation: 

p 
Qij 
Qi* 
Q y  
Ns 

traffic arrival rate for a single VOQ 
VOQ in input i holding cells to output j 
all VOQs in input i 
number of cells in Q i j  at time t 
expected number of cells in a VOQ at the end of 
service cycle , 

Under uniform traffic, the traffic arrival to VOQs can be 
approximated using N 2  i.i.d. possion processes with arrival 
rate p .  Traffic is admissible; thus p < 1/N. In other words, 
p is the expected number of arrivals for a VOQ in one time 
slot. 

Under uniform traffic, LQF can be approximated by a time 
division multiplexing (TDM) scheme. Since the VOQs receive 
similar arrival and service, let us focus on VOQs in one input 
port, say input port 1. Input port 1 connects to output 1, output 
2, - - . ,  output N in a cyclical manner. Q1' ,Q12, . - .  ,QIN 
are served in sequence and have similar behavior. The service 
cycle for each single queue is of length N ( z ,  + zb) and is 
illustrated by Fig. 6. 

2) Expected Number of Cells in a Single VOQ at the End 
of Service Cycle: Given some holding time Z b  that ensures 
the stability of the system, take Ql1 as a representative of 
VOQs. Assume time interval [Til, T(i+l)l] is a service cycle 
for Ql1 when the switch is in stable state. As illustrated in 
Fig. 6, Ql1 may have cell arrivals during [Til, T(i+l)l] at rate 
p ,  while the departure may only happen during [T',T(i+l)l] 
at rate S. We approximate the rate S service (denoted by 
Servicel) in [T', T(i+l)l] by a rate N(F&b) service (denoted 
by Service2) in [Ti~,T(i+l)~],  shown in Fig.6. Under such 
approximation, Ql1 behaves as an M/D/l system with X = p 
and p = (Z,tZ,,. " Denote p = X/p, according to the P- 
K formula, the expected number of cells in Ql1 at time 
Til (T(i+l)l) is given by: 

This can be extended to Q l k ,  IC E [l, N ]  as follows: 

Consider the accuracy of the above approximation. Under 
high traffic load, Ql1 has a high probability of being non- 
empty during [Til, T(i+l)l]. Thus Service1 and Service2 may 
serve the same number of cells. But if there is a situation with 
rare cell arrival near T and the queue is often empty, while 
a burst arrives from the middle of the duration. This arrival 
pattern does not influence Service1 since it accumulates the 
traffic and then sends; however, some of the service capacity 
of Service2 is wasted at first. So the number of cells at time 
T(i+l)l by Service2 is an upper bound of that by Servicel. 
Although our approximation will be reasonably accurate only 
for relatively high traffic loads; still, this estimation is mean- 
ingful since normally switches are best tested and evaluated 
under their full capacity. 

3) Expected Number of Cells in an Input at Erne Ti,+: 
The expected total number of cells in input 1 at time T ~ N  is 
E[QZN] = E,"=, E[QgN] .  According to the service cycle, 

E[QEN] = Ns + ( N  - l)(z, + z b ) ~  

So we get 

Equation 2 can be extended to any time instant Tik, k E [l, NI. 
4) Expected Average Number of Cells in an Input: Finally, 

let us consider the expected average number of cells (call 
it E[AVGp+])  in input 1. Under the stable assumption, 
E[AVGQl*] is the same at any time interval [Tik, Ti(h+l)](k E 
1, ... , N  - 1) and [T i~ ,T (~+l ) l ] .  Without loss of generality, 
we just consider the time interval [ T ~ N ,  T(i+l)l]. Suppose we 
have Q E N  cells at the starting time slot T ~ N .  A cell arrives 
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Fig. 7. Illustration of weighted amval and departure. (Here we assume cells 
amves at the beginning of a time slot, and departures at the end of a time 
slot.) 

at that time slot and there is no other arrival or departure 
in [ T ~ N ,  T(i+l)l]. Obviously, AVGQI* = QEN + 1. Consider 
another arrival situation: there is one cell arriving at the middle 
of the time interval, and no other arrival or departure. This 
time, AVGQI. equals to QEN + 0.5. Here we can see arrivals 
contribute to the average queue length on a weighted basis, 
so do the departures. The weight is defined as the difference 
between the end of time interval and arrivaudeparture time 
instant, as shown in Fig. 7. 

From the above analysis, E[AVGQ~.] can be expressed as 
follows: 

E[AVGQl*] = Q + A - 2) (3) 

where Q: expected number of cells in Q1* at time T ~ N  
A: expected number of weighted arrival in time interval 

27: expected number of weighted departure in time interval 

Assume there are A1* cells arrive input 1 during 
[Ti~,T(i+l)l],  the ith cell has a weight wi. Then A can be 
expressed as 

[ T i N ,  T(i+i)i] 

[TiN, T(i+l)l] 

A I *  A I *  .. _ _  
A = E[C wi] = E [ E [ C  wilA1*]] (4) 

i=l i=l 

( 5 )  

The transformation from (4) to (5) depends on the property 
of the possion process: given there are n arrivals in a time 
interval with length t ,  then those n arrivals are i.i.d. uniformly 
distributed along the duration. 

Now let us consider the departures of input 1. During 
[ T ~ N ,  T(i+l)l], only Ql’ can transmit cell out in [TI, T(i+l)l]. 
An accurate description of when all the departures from Q1l 
happen is extremely difficult. Since Ql’ may have many 
accumulated cells near time T’ and they leave at full service 
capacity S. But as time passes by, the service rate may follow a 
decreasing trend, with small trembling according to the burst 
arrival. We approximate the departures using a flat service 
with rate S‘. 27 under real situation is upper-bounded by 2) 
calculated under the above approximation. Since we assume 
the switch to be stable, during the service cycle of QI1 (which 
is [Til, T(i+l)l]), the expected number of arrivals to Ql1 equals 
to the expected number of departures. Thus SI = N ( s a - f b z b ) x p .  

From the above analysis, we get 

zb - 1 = N P x -  N(Za + zb) X p ( z b  - 1 )  f ... f O 
2 

D =  
za  + zb 

(6) 
zb 

We’ve already shown Q = E[Qti]  in Eq.(2). Together with 
Eq.(5) and Eq.(6), E[AVGQI.] can be calculated. 

Following Little’s Formula, under a given p ,  the expected 
average cell waiting time E[AVGw] in input 1 is 

E[AVGw] = E [ A V G Q I * ] / N ~  

To minimize the average delay is equivalent to minimizing 
the average number of cells. So a suitable zb can be chosen 
according to 

given p = pN(za + zb)/szb, and zb is an integer that satisfies 
the requirement in Lemma 1. 

IV. CONCLUSION 

Scheduling optical-fabric switches with reconfiguration de- 
lay is a relatively new topic motivated by the recent increase 
of line rates, requirements on switch scalability, and the use 
of multi-rack switch architectures. This paper compares the 
performance of two classes of scheduling schemes designed 
for switches with reconfiguration delay. In addition, we in- 
vestigated the stability requirement as well as average/worst 
delay. Mathematical models are formulated for the LQF+Hold 
scheduling algorithm.The goal of this research is to provide 
some guidance on the choice of the appropriate scheduling 
algorithms for given hybrid optical-electronic switch systems. 
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