
Design and Analysis of Scheduling Algorithms for
Switches with Reconfiguration Overhead

Xin Li and Mounir Hamdi
Department of Computer Science

Hong Kong University of Science & Technology
Clear Water Bay, Kowloon, HongKong

Email: hamdi@cs.ust.hk

Abstract- Hybrid architectures with electronic buffering /pro-
cessing and optical switching fabric are receiving a lot of
attention as potential candidates for the design of scalable high-

. performance switches/routers. However, the reconfiguration over-
head of optical fabrics introduces new challenges for the traffic
scheduling across these switches. Existing algorithms proposed
for this architecture can be classified as either batch-scheduling
or single-scheduling. This paper is the first which analyzes and
compares the performance of these two scheduling classes. The
comparison is based on speedup requirement, average and worst-
case delay and algorithm efficiency. Moreover, analytical models
for the stability and average delay of single-scheduling algorithms
are introduced in this paper. We will demonstrate that these
results are helpful in determining the right type of algorithm
and choosing the appropriate algorithm parameters for a given
switch system.

I. INTRODUCTION

Recent advances in communication link technology, such as
Dense Wavelength Division Multiplexing (DWDM), have dra-
matically increased the transmission capacity of optical fibers.
As a result, switches/routers are replacing the transmission link
as the bottleneck of network. This has lead to a high demand
for high-speed switches/routers with large I/O ports than ever
before. For example, switches of size 256 to 1024, running
at OC192 (lOGb/s) or even higher speed are becoming (will
soon become) a necessity for most IP core networks.

Most high-performance switches/routers today use an all-
electronic solution, with Virtual Output Queuing (VOQ) and a
crossbar-based switching fabric. Current state-of-the-art elec-
trical switching fabrics support only up to 2.5Gb/s [l]. A re-
cent break-through demonstrated that a 256x 256 2GbIsec per
port non-cascading crossbar chip can be practically designed
[2]. The power consumption of this crossbar chip and the
scheduler chip is around 1kW. However if we want to further
upgrade the design in size (e.g., 1024x 1024) and/or data
rate (e.g., OC768, 40Gb/s), and at the same time incorporate
redundancy for fault tolerance, then the power consumption
and number of chips needed will be an order of magnitude
higher. Given the fact that the default power consumption per
piece of equipment (e.g., rack) is typically 6kW in addition to
compliance with NEBS physical-packaging requirements (i.e.,
rack size), then this necessitates the distributed design of the

This work was supported in part by a grant from Hong Kong Research
Grant Council (Grant Number: RGC HKUST6202-99E).

Fig. 1. Schematic view of a multi-rack hybrid packet switch.

whole switchlrouter over several racks where one rack would
contain the switch fabric and the scheduler, and the other racks
would contain the linecards.

It is possible to transport electrical signals between different
racks, using coax, twisted-pair, etc. But consider there maybe
potentially thousands of signals travelling between different
racks, and this quickly leads to a cabling nightmare. One
technology increasingly used to solve the problem is optical
fiber interconnections [11. When such a switch architecture
is deployed, packets that arrive from the external interfaces
are processed and buffered in the electronic domain. Data are
then transmitted over a fiber link to the switch fabric rack,
where they are processed again in electronics. Once they are
switched, a different fiber connection is used to transmit the
packets to the egress linecards, where they are again processed
and buffered in electronics, before finally being transmitted in
optics. Hence series of opto-electronic conversions are needed,
that translate into significant cost and power requirements. In
other words, if the whole switchlrouter design cannot fit within
a single rack, then it becomes extremely difficult to come up
with a cost-effective solution using an electronic switch fabric.

For exactly these reasons, a hybrid switch architecture
with electronic buffers and optical switching fabric, as shown
in Fig. 1, is proposed for designing high-capacity scalable
switches. Moreover, optical fabrics have many advantages over
their electrical counterparts in terms of higher capacity, lower
power consumption and less cost.

0-7803-7710-9/03/$17.00 0 2003 IEEE. 61

However, a large-scale hybrid packet switchhouter presents
unique challenges: the reconfiguration time of an optical
switch fabric is much longer than that of an electronic fabric.
With typical cell sizes on the order of 50ns (64bytes at
10Gb/s), the fabric takes from 0.2 to 20,000 cell times to
reconfigure [3]. Traffic may still arrive during the reconfig-
uration periods, but are blocked before being switched. Hence
the fabric should run at higher switching speed than the line
rate during the transfer periods. In other words, the switch
should have fabric speedup to compensate the blockage at the
reconfiguration period.

It is obvious that traditional slot-by-slot scheduling algo-
rithms may severely cripple the switch performance by having
too much reconfiguration overhead. Instead, schedules should
be held for some time to avoid frequent fabric reconfigurations.
There exists a tradeoff between outdated schedule and recon-
figuration overhead. As a result, how to determine the schedule
and its holding time efficiently is extremely important, and is
our key motivation in this paper. Recent research scheduling
algorithms for optical fabrics can be roughly divided into two
categories, namely batch-scheduling and single-scheduling,
based on the number of schedules they make at each run.

The reminder of this paper introduces the two classes of
algorithms, emphasizing their performance and comparing
them to each other. In addition, we give analytical models for
the stability and average delay of single-scheduling class of
algorithms. Section I1 is about the performance and analysis of
these scheduling algorithms. Analytical models are presented
in Section 111. Finally, conclusions are drawn in Section IV.

11. ALGORITHMS FOR SWITCHES WITH
RECONFIGURATION DELAY

We assume the algorithm runs on a VOQ non-blocking N x
N switch with reconfiguration delay z,. The switch operates
on fixed-size data units (say, cell) in a slotted manner and
hence has integer speedup S. There is at most 1 arrival for
each input at each time slot. Denote X i j to be the arrival rate
of traffic from input i to output j. Only admissible traffic is
considered in this paper. That is, V j E 1 . . . N , X i j < 1
and V i E 1 . . . N , X i j < 1.

A. Butch Scheduling: a TSA-Based scheudling

The idea of batch-scheduling comes from Time Slot Assign-
ment (TSA) algorithms for Satellite Switching Time Division
Multiple Access (SS/TDMA) system, in which reconfigura-
tion delay also exists. The algorithm runs in accumulate-
schedule-transfer cycles as shown in Fig.2. lncoming traffic
are accumulated periodically and the accumulation time is a
predefined integer T. A particular cycle first accumulates traffic
in a N x N traffic matrix D. Batch scheduling algorithm
then decomposes D into a set of permutation matrices Pi,
each has weight l i . These matrices correspond to a batch
of schedules and the lengths these schedules hold. Assume
the number of permutation matrices is K , the decomposition
should satisfy: 1) D is covered, that is, xi=, liPi 2 D; 2)
The total transmission time of D (including reconfiguration

K

Batch
Sched i

Batch
Sched i+l

p2 _ _ _ _ _ d.. ...Qme
PI

1--. .-.
. H * H .

......
iTConfig Transfer Config Transfer (i+l)T

.. --H -- "-
Traffic accumuation

period for batch Sched i+l

Fig. 2. Execution timeline of batch scheduling algorithms.

delay), which is Z i + Kz,, is minimized. Traffic in D
are sent out according to the schedules and the transmission
period should finishes in T time slots. Normally speedup is
needed to achieve this. Traffic accumulation of the next cycle
starts simultaneously with the transmission period.

1) A Representative Butch-Scheduling Algorithm: Find out
the schedules that minimize the transmission time is a NP-
complete problem. Most previous TSA algorithms, as in [4][5],
normally assume the reconfiguration delay to be either zero or
infinity for simplification. A recent enhancement, DOUBLE
algorithm in [3], breaks this limitation and claims better per-
formance over large range of reconfiguration delay values. At
each batch scheduling point, DOUBLE executes the following
procedure:

Divide the traffic matrix D into coarse matrix A andJine
matrix B. Assume d i j , aij and bij (1 5 i , j 5 N) are
the elements in the corresponding matrix. Matrix A and
B are calculated by,

Under admissible traffic, [3] proves that
- For a coarse matrix A, the column sum and row

sum are less than N . A can be edge-colored using
N colors.

- For a fine matrix B, all elements are less than [TIN]
Using the above properties, DOUBLE generates K = 2N
schedules, each with holding length [T I N] . N of them
are produced by edge-coloring coarse matrix A; the other
N schedules are just N non-overlapping permutation
matrices. [3] shows that the traffic matrix D will always
be covered by such schedule method.

2) Speedup and Accumulation i7me Requirement: The 2N
schedules has a total transmission time 2N x [T I N] . As
indicated in Corollary 3 in [3], a speedup of & is needed
to transmit these schedules in T time slots. Fig.3 shows the
speedup required by DOUBLE for a 16 x 16 switch under
different reconfiguration delay settings. Because the speedup
is an integer in slotted switching system, DOUBLE can only
run on switches with speedup larger or equals to 3.

For an N x N switch with reconfiguration delay z,, the
accumulation time T of DOUBLE should be no less than
Tmin = 2z,N. Accumulation time may be relatively large
for switches with large number of ports and/or long recon-
figuration delay, e.g. a 128 x 128 switch with z , = 50 may
require an accumulation time larger than lo5 time slots.

3) Bound of Average Delay and Worst Delay: Consider a
cell arriving at some time in the accumulation period of batch

62

1200, , 14

I'
I

Smln

1
50 100 150 200 250 300 350

Accumulation time

Fig. 3. Relationship between traffic accumulation time and required speedup
(use N=16 as example).

schedule i. The queuing delay of that cell includes: 1) waiting
time before batch schedule i is executed, which takes value of
[0, TI and 2) waiting time before its schedule comes. This may
take a value in the range of [x,, TI. Under an i.i.d. arrival, the
expected value of waiting time in 1) is T/2 . Thus the average
cell delay for a TSA-based algorithm is at least larger than
half of its accumulation time. For the worst-case delay bound,
the execution of TSA ensures cell delay is less than 2T.

4) Algorithm Eficiency of DOUBLE under Uniform Trafic:
A N x N switch is able to set up N non-contending connec-
tions between inputs and outputs. We say this switch has a
capacity of N . If a particular algorithm can manage to set up
to K(O 5 K 5 N) connections on average for the switch, we
say the algorithm efficiency is KIN.

Let us look at the coarse matrix A generated by DOUBLE.
Under admissible uniform traffic, the line sum and row sum
of traffic matrix D is less than its accumulation time T ,
and E[dij] = T / N . That indicates for each rowlcolumn, the
expected number of elements which are larger than T I N is
less than N/2. Since aij = I*], the expected number
of non-zero entries in A is less than N2/2 . This half-empty
coarse matrix A is scheduled to be covered by N schedules,
which may have N 2 potential transfer capacity. It is clear that
around 50% of the transfer capacity is wasted.

The schedule of fine matrix B is not optimistic either. Ele-
ments in B are uniformly distributed in the range [0, LT/N]].
However each of the N schedules holds [TIN1 time slots.
Many connections are idle for a large portion of the schedule
holding time. Our simulation shows that the schedule effi-
ciency for coarse matrix is 40% to 50%, and 30% to 40%
for fine matrix under uniform traffic.

TIN

B. Single Scheduling

Single-scheduling algorithms can be viewed as a slowed-
down version of traditional electronic switch scheduling al-
gorithms. It generates one schedule each time and hold this
schedule for several time slots. Similar ideas can be found
in burst-mode switching in [6] and packet-mode scheduling

Reconfiguration overhead

Fig. 4.
(for 4 x 4 switch under uniform traffi c with load 0.99)

Minimum achievable average delay by DOUBLE and LQF+Hold

in [7]. The system works as schedule-reconfiguration-transfer
cycle. The holding length of a particular schedule can either
be constant or vary with the switch state. In this paper, we
assume the holding length to be constant.

1) A Representative Single-Scheduling Algorithm: The
queueing states change along with the transfer period and the
schedule becomes outdated. Some VOQs may have already
sent out all its cells before the transfer period ends but the
connections for them cannot be released. Intuitively, a schedule
favoring longer queues helps to reduce the resource wastage
mentioned aboveLongest Queue First (LQF) algorithm should
be a good choice. LQF+Hold is used in this paper to refer
to a single-scheduling which uses LQF algorithm to find
matchings.

2) Speedup Requirement: As proved in Section 111-A, a
speedup of 2 is sufficient for a LQF+Hold scheduling algo-
rithm to be stable.

3) Average and Worst Delay: An estimation model of
average delay of the LQF+Hold scheduling algorithm under
uniform traffic is given in Section 111-B. The average delay is
a function of switch size, reconfiguration delay, holding time
and traffic arrival rate. No worst delay bound is guaranteed.

4) Algorithm Eficiency: Simulation shows that under
heavy load, the LQF+Hold scheduling algorithm achieves an
efficiency of over 90%. This is a direct consequence of the
good properties of LQF.

C. Comparison Between Batch and Single Scheduling

DOUBLE and LQF+Hold are simulated under same system
setting. Fig. 4 shows the minimum average delay they achieve
under different reconfiguration overheads and speedup settings
for a switch of size 4. As can be seen, DOUBLE is sensitive to
the speedup, and increase of speedup may significantly reduce
the average delay. As the reconfiguration delay increases, both
algorithms ensure the average delay will not increase a lot. For
small switch size or short reconfiguration delay, DOUBLE and
LQF+Hold provide an average delay of the same magnitude.
Choice between them depends on what is the focus: small
average delay or a guarantee of worst-case delay bound. For

switches with large sizes andfor large reconfiguration delays,
since DOUBLE may require a rather long accumulation length
and hence increases the delay time, LQF+Hold scheduling
may serve as a better choice.

111. ANALYTICAL MODELS OF SINGLE SCHEDULING
ALGORITHM

This section presents the analytical models for the stability
and average delay of the LQF+Hold scheduling algorithm.

A. Stability Analysis

1) Dejinitions and Preliminavy Results: The behavior of
an N x N switch can be approximated using M (M = N 2)
discrete-time queues of infinite capacities. Let Qt be the row
vector of queue lengths at time t , i.e., Qt = { q j , q:, . . . , qy},
where qf is the number of cells in queue i at time t. Denote the
arrivals at time t by At = {u t , U : , . . . , a y } and the departures
by Dt = {d i ,d? , . . . , d p } . We assume that ai of vector At
are independent and identically distributed (i.i.d.) for variable
t with fixed i. Since at each time slot, for each input, there
is at most one arrival, each element uf can only take values
0 or 1 for all i and t. If the system has speedup S (S is
assumed to be integer in this paper), then each element dt
can take values 0,1,. . . , S. The system evolves according to
Qt+i = Qt + At - Dt.

Denote llXll by the Euclidean norm of vector X =

{d ,z2 ,..., zK}; llXll = d w . In addition, V(Xt)
is denoted to a special Lyapunov function: V(Xt) = X t X T .

The evolution of most practical discrete-time queuing sys-
tems can be described by an irreducible discrete-time Markov
chain (DTMC), whose state vector at time t is Qt, Qt E I N M .
The following theorem is a paraphrase of Corollary 1 in [7]. It
provides a criterion for the strong stability of DTMC queuing
systems.

Theorem 1: Given a system of queues with state vector Qt,
if there exists e E R+ and B E R+ such that VQt : IlQtll >
B, E[V(Qt+l) - v(Qt)lQt] < -ellQtll, then the system of
queues is strongly stable, and all the polynomial moments of
the queue length distributions are finite.

2) Stability of LQF+Hold Scheduling: Let us consider the
stability of the LQF+Hold scheduling. The system works in
configuration-transfer cycles as shown in Fig. 5. New schedul-
ing decisions are made at a sequence of time instants t , E
I N + , based on current queuing state Qt,. The connection is
set up in the switching fabric after z , reconfiguration time slots
and is held for a predetermined zb slots. Since the evolution
of the system following t , is conditionally independent of the
evolution of the system before t,, the sequence of t , is a
non-defective sequence of regeneration instants.

Lemma I : Given a switch with reconfiguration delay z,,
LQF+Hold scheduling with a predefined holding time zb is
stable under any admissible i.i.d. input traffic pattern A, as
long as the switch has a speedup S 2 1-1.

prooJ The evolution of the system is represented by a
DTMC whose state is a vector of queue lengths Qt, . Between

Config Transfer

za ~b I . U " U U " .
, I 1 1 ' 1 1 1 1 1 1 1 1 I . .T ime

tn-1 tn tn+l
. --Arrival period

-Departure period - - -

Fig. 5. Execution time line of single schedule+hold algorithm.

neighboring regeneration time instants, the system evolutes
according to:

\ i=o j = Z a

Please note that in the above equation the elements in Dt,+j
are assumed to be either 0 or 1 (different from Dt de-
fined previously) to simpli the presentation. In addition,
Ci=O Z a - k Z b - 1 At,+i and Ci:Ta 9 z b - l Dt,+j will be represented
by A and D in the following proof.

We start as

Under the constraint of 0/1 arrival and [O S] departures at
every time slot, with a finite holding time zb, E [(C A -

D)T] is also finite. Thus, D) (C A -
E[V(Qtn+l) - '(Qtn 1 IQtn 1 lim

IlQt, ll+m IlQtn II

Please note although all Dt,+i refer to the same matching,
they are not necessarily equal. Since some queues assigned
to transfer may have been empty before the next scheduling
instant.

Define D6 = StbDtn+za - ~ ~ : ~ a s z b - - ' Dt,+j; it is the
difference between the assigned transfer capacity and the
actual transmission number in one cycle. Thus,

= E [(x A - SzbDtn+za + D6)Qc lQtnl

= (za + zb)E[An]QE - SzbDtn+zaQE + E[D&]Q%

We know from [8] that LQF has the property of (E[A,] -
Dt,)QE < 0. If the speedup S satisfies S 2 1-1. Note
E[D6]QE 5 ME[z;] < 00. Now we have,

64

Service cycle of Q11
4

Za Z b

.-. I 1 I I-..
t * . 4-b --* Transmission
Q i i Qi; Q1N Q" sequence

. Q I l lenath

time

Q I 1 arrival 4 .
all departure (rate S) - Servicel

4 . Service2 all approx. departure
rate=Szb/N(za+zb)

Fig. 6. Service cycle for a particular VOQ (use Ql1 as example)

The conclusion from the above analysis suggests that if the
holding time is chosen to be larger than the reconfiguration
delay, a speedup of 2 is sufficient for the LQF+Holding
scheduling algorithm to be stable.

B. Approximate Average Delay Estimation

Besides the property of stability, average cell delay is
also a common criterion to evaluate the performance of
scheduling algorithms. Given a switching system (NxN ports,
reconfiguration delay za and speedup S) , if the LQF+Hold
scheduling is used, then the cell delay is directly determined
by the algorithm holding length .q,. In order to provide some
clarification of the relationship between average delay and
holding time, we construct an approximate queuing model.
The model works under uniform traffic, but can be extended
to non-uniform cases. It may also serve as a guidance on how
to choose an appropriate holding time. In this paper, we only
consider the case where the LQF+Hold scheduling algorithm
have a constant holding time.

I) Notation and Assumption: Below is a list of notations
used throughout the delay estimation:

p
Qij
Qi*
Q y
Ns

traffic arrival rate for a single VOQ
VOQ in input i holding cells to output j
all VOQs in input i
number of cells in Q i j at time t
expected number of cells in a VOQ at the end of
service cycle ,

Under uniform traffic, the traffic arrival to VOQs can be
approximated using N 2 i.i.d. possion processes with arrival
rate p . Traffic is admissible; thus p < 1/N. In other words,
p is the expected number of arrivals for a VOQ in one time
slot.

Under uniform traffic, LQF can be approximated by a time
division multiplexing (TDM) scheme. Since the VOQs receive
similar arrival and service, let us focus on VOQs in one input
port, say input port 1. Input port 1 connects to output 1, output
2, - - . , output N in a cyclical manner. Q1' ,Q12, . - . ,QIN
are served in sequence and have similar behavior. The service
cycle for each single queue is of length N (z , + zb) and is
illustrated by Fig. 6.

2) Expected Number of Cells in a Single VOQ at the End
of Service Cycle: Given some holding time Z b that ensures
the stability of the system, take Ql1 as a representative of
VOQs. Assume time interval [Til, T(i+l)l] is a service cycle
for Ql1 when the switch is in stable state. As illustrated in
Fig. 6, Ql1 may have cell arrivals during [Til, T(i+l)l] at rate
p , while the departure may only happen during [T',T(i+l)l]
at rate S. We approximate the rate S service (denoted by
Servicel) in [T', T(i+l)l] by a rate N(F&b) service (denoted
by Service2) in [Ti~,T(i+l)~], shown in Fig.6. Under such
approximation, Ql1 behaves as an M/D/l system with X = p
and p = (Z,tZ,,. " Denote p = X/p, according to the P-
K formula, the expected number of cells in Ql1 at time
Til (T(i+l)l) is given by:

This can be extended to Q l k , IC E [l, N] as follows:

Consider the accuracy of the above approximation. Under
high traffic load, Ql1 has a high probability of being non-
empty during [Til, T(i+l)l]. Thus Service1 and Service2 may
serve the same number of cells. But if there is a situation with
rare cell arrival near T and the queue is often empty, while
a burst arrives from the middle of the duration. This arrival
pattern does not influence Service1 since it accumulates the
traffic and then sends; however, some of the service capacity
of Service2 is wasted at first. So the number of cells at time
T(i+l)l by Service2 is an upper bound of that by Servicel.
Although our approximation will be reasonably accurate only
for relatively high traffic loads; still, this estimation is mean-
ingful since normally switches are best tested and evaluated
under their full capacity.

3) Expected Number of Cells in an Input at Erne Ti,+:
The expected total number of cells in input 1 at time T ~ N is
E[QZN] = E,"=, E[QgN] . According to the service cycle,

E[QEN] = Ns + (N - l)(z, + z b) ~

So we get

Equation 2 can be extended to any time instant Tik, k E [l, NI.
4) Expected Average Number of Cells in an Input: Finally,

let us consider the expected average number of cells (call
it E[AVGp+]) in input 1. Under the stable assumption,
E[AVGQl*] is the same at any time interval [Tik, Ti(h+l)](k E
1, ... , N - 1) and [T i~ ,T (~+l) l] . Without loss of generality,
we just consider the time interval [T ~ N , T(i+l)l]. Suppose we
have Q E N cells at the starting time slot T ~ N . A cell arrives

65

Fig. 7. Illustration of weighted amval and departure. (Here we assume cells
amves at the beginning of a time slot, and departures at the end of a time
slot.)

at that time slot and there is no other arrival or departure
in [T ~ N , T(i+l)l]. Obviously, AVGQI* = QEN + 1. Consider
another arrival situation: there is one cell arriving at the middle
of the time interval, and no other arrival or departure. This
time, AVGQI. equals to QEN + 0.5. Here we can see arrivals
contribute to the average queue length on a weighted basis,
so do the departures. The weight is defined as the difference
between the end of time interval and arrivaudeparture time
instant, as shown in Fig. 7.

From the above analysis, E[AVGQ~.] can be expressed as
follows:

E[AVGQl*] = Q + A - 2) (3)

where Q: expected number of cells in Q1* at time T ~ N
A: expected number of weighted arrival in time interval

27: expected number of weighted departure in time interval

Assume there are A1* cells arrive input 1 during
[Ti~,T(i+l)l], the ith cell has a weight wi. Then A can be
expressed as

[T i N , T(i+i)i]

[TiN, T(i+l)l]

A I * A I * .. _ _
A = E[C wi] = E [E [C wilA1*]] (4)

i=l i=l

(5)

The transformation from (4) to (5) depends on the property
of the possion process: given there are n arrivals in a time
interval with length t , then those n arrivals are i.i.d. uniformly
distributed along the duration.

Now let us consider the departures of input 1. During
[T ~ N , T(i+l)l], only Ql’ can transmit cell out in [TI, T(i+l)l].
An accurate description of when all the departures from Q1l
happen is extremely difficult. Since Ql’ may have many
accumulated cells near time T’ and they leave at full service
capacity S. But as time passes by, the service rate may follow a
decreasing trend, with small trembling according to the burst
arrival. We approximate the departures using a flat service
with rate S‘. 27 under real situation is upper-bounded by 2)
calculated under the above approximation. Since we assume
the switch to be stable, during the service cycle of QI1 (which
is [Til, T(i+l)l]), the expected number of arrivals to Ql1 equals
to the expected number of departures. Thus SI = N (s a - f b z b) x p .

From the above analysis, we get

zb - 1 = N P x - N(Za + zb) X p (z b - 1) f ... f O
2

D =
za + zb

(6)
zb

We’ve already shown Q = E[Qti] in Eq.(2). Together with
Eq.(5) and Eq.(6), E[AVGQI.] can be calculated.

Following Little’s Formula, under a given p , the expected
average cell waiting time E[AVGw] in input 1 is

E[AVGw] = E [A V G Q I *] / N ~

To minimize the average delay is equivalent to minimizing
the average number of cells. So a suitable zb can be chosen
according to

given p = pN(za + zb)/szb, and zb is an integer that satisfies
the requirement in Lemma 1.

IV. CONCLUSION

Scheduling optical-fabric switches with reconfiguration de-
lay is a relatively new topic motivated by the recent increase
of line rates, requirements on switch scalability, and the use
of multi-rack switch architectures. This paper compares the
performance of two classes of scheduling schemes designed
for switches with reconfiguration delay. In addition, we in-
vestigated the stability requirement as well as average/worst
delay. Mathematical models are formulated for the LQF+Hold
scheduling algorithm.The goal of this research is to provide
some guidance on the choice of the appropriate scheduling
algorithms for given hybrid optical-electronic switch systems.

REFERENCES
M. Zimgibl, Optical Fiber Communications. KaminowLi Academic
Press, 2002.
T. Wu, C. Y. Tsui, and M. Hamdi, “A 2 Gb/s 256*256 CMOS crossbar
switch fabric core design using pipelined m u , ” in Proc. IEEE Inter-
national Symposium on Circuits and Systems (ISCAS’O2), Scottsdale,
Arizona, May 2002, pp. 568-571.
B. Towles and W. J. Dally, “Guaranteed scheduling for switches with
confi guration overhead,” in Proc. Twenty-First Annual Joint Conference
of the IEEE Computer and Communications Societies (INFOCOM’O2),
New York, June 2002, pp. 342-351.
T. Inukai, “An efficient SS/TDMA time slot assignment algorithm,” IEEE
Trans. Commun., vol. 27, pp. 1449-1455, Oct. 1979.
I. S. Gopal and C. K. Wong, “Minimizing the number of switchings in an
SS/TDMA system,” IEEE Trans. Commun., vol. 33, pp. 497-501, June
1985.
G. Nong and M. Hamdi, “Burst-based scheduling algorithms for non-
blocking atm switches with multiple input queues,” IEEE Commun. Lett.,
vol. 4, pp. 202-204, June 2000.
M. A. Marsan, A. Bianco, P. Giaccone, E. Leonardi, and F. Neri, “Pakcet-
mode scheduling in input-queued cell-based switches,” IEEE/ACM Trans.
Networking, vol. 10, pp. 666478, Oct. 2002.
N. Mckeown, A. Mekkittikul, V. Anantharam, and J. Walrand, “Achieving
100% throughput in an input-queued switch,” ZEEE Trans. Commun.,
vol. 47, pp. 1260-1267, Aug. 1999.

66

